Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.03.09.531862

ABSTRACT

SARS-CoV-2 has demonstrated extraordinary ability to evade antibody immunity by antigenic drift. Small molecule drugs may provide effective therapy while being part of a solution to circumvent SARS-CoV-2 immune escape. In this study we report an alpha-ketoamide based peptidomimetic inhibitor of SARS-CoV-2 main protease (Mpro), RAY1216. Enzyme inhibition kinetic analysis established that RAY1216 is a slow-tight inhibitor with a Ki of 8.6 nM; RAY1216 has a drug-target residence time of 104 min compared to 9 min of PF-07321332 (nirmatrelvir), the antiviral component in Paxlovid, suggesting that RAY1216 is approximately 12 times slower to dissociate from the protease-inhibitor complex compared to PF-07321332. Crystal structure of SARS-CoV-2 Mpro:RAY1216 complex demonstrates that RAY1216 is covalently attached to the catalytic Cys145 through the alpha-ketoamide warhead; more extensive interactions are identified between bound RAY1216 and Mpro active site compared to PF-07321332, consistent with a more stable acyl-enzyme inhibition complex for RAY1216. In cell culture and human ACE2 transgenic mouse models, RAY1216 demonstrates comparable antiviral activities towards different SARS-CoV-2 virus variants compared to PF-07321332. Improvement in pharmacokinetics has been observed for RAY1216 over PF-07321332 in various animal models, which may allow RAY1216 to be used without ritonavir. RAY1216 is currently undergoing phase III clinical trials (https://clinicaltrials.gov/ct2/show/NCT05620160) to test real-world therapeutic efficacy against COVID-19.


Subject(s)
COVID-19
2.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.05.03.490381

ABSTRACT

While SARS-CoV-2 pathogenesis has been intensively investigated, the host mechanisms of viral clearance and inflammation resolution are still elusive because of the ethical limitation of human studies based on COVID-19 convalescents. Here we infected Syrian hamsters by authentic SARS-CoV-2 and built an ideal model to simulate the natural recovery process of SARS-CoV-2 infection from severe pneumonia. We developed and applied a spatial transcriptomic sequencing technique with subcellular resolution and tissue-scale extensibility, i.e., Stereo-seq, together with single-cell RNA sequencing (scRNA-seq), to the entire lung lobes of 45 hamsters and obtained an elaborate map of the pulmonary spatiotemporal changes from acute infection, severe pneumonia to the late viral clearance and inflammation resolution. While SARS-CoV-2 infection caused massive damages to the hamster lungs, including naive T cell infection and deaths related to lymphopenia, we identified a group of monocyte-derived proliferating Slamf9+Spp1+ macrophages, which were SARS-CoV-2 infection-inducible and cell death-resistant, recruiting neutrophils to clear viruses together. After viral clearance, the Slamf9+Spp1+ macrophages differentiated into Trem2+ and Fbp1+ macrophages, both responsible for inflammation resolution and replenishment of alveolar macrophages. The existence of this specific macrophage subpopulation and its descendants were validated by RNAscope in hamsters, immunofluorescence in hACE2 mice, and public human autopsy scRNA-seq data of COVID-19 patients. The spatiotemporal landscape of SARS-CoV-2 infection in hamster lungs and the identification of Slamf9+Spp1+ macrophages that is pivotal to viral clearance and inflammation resolution are important to better understand the critical molecular and cellular players of COVID-19 host defense and also develop potential interventions of COVID-19 immunopathology.


Subject(s)
Acute Disease , Adenocarcinoma, Bronchiolo-Alveolar , Pneumonia , Severe Acute Respiratory Syndrome , Carcinoma, Renal Cell , COVID-19 , Inflammation , Lymphopenia
4.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.07.19.21260139

ABSTRACT

COVID-19 is a huge threat to global health. Due to the lack of definitive etiological therapeutics currently, effective disease monitoring is of high clinical value for better healthcare and management of the large number of COVID-19 patients. In this study, we recruited 37 COVID-19 patients, collected 176 blood samples upon diagnosis and during treatment, and analyzed cell-free DNA (cfDNA) in these samples. We report gross abnormalities in cfDNA of COVID-19 patients, including elevated GC content, altered molecule size and end motif patterns. More importantly, such cfDNA characteristics reflect patient-specific physiological conditions during treatment. Further analysis on tissue origin tracing of cfDNA reveals frequent tissue injuries in COVID-19 patients, which is supported by clinical diagnoses. Hence, we demonstrate the translational merit of cfDNA as valuable analyte for effective disease monitoring, as well as tissue injury assessment in COVID-19 patients.


Subject(s)
COVID-19
5.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.06.425542

ABSTRACT

ObjectiveThe etiology and epidemiology of co-infection and secondary infection in COVID-19 patients remain unknown. The study aims to investigate the occurrence and characteristics of co-infection and secondary infection in COVID-19 patients, mainly focusing on Streptococcus pneumoniae co-infections. MethodsThis study was a prospective, observational cohort study of the inpatients diagnosed with COVID-19 in two designated hospitals in south China enrolled between Jan 11 and Feb 22, 2020. The urine specimen was collected on admission and applied for pneumococcal urinary antigen tests (PUATs). Demographic, clinical and microbiological data of patients were recorded simultaneously. ResultA total of 146 patients with a confirm diagnosis of COVID-19 at the median age of 50.0 years (IQR 36.0-61.0) were enrolled, in which, 16 (11.0%) were classified as severe cases and 130 (89.0%) as non-severe cases. Of the enrolled patients, only 3 (2.1%) were considered to present the co-infection, in which 1 was co-infected with S.pneumoniae, 1 with B. Ovatus infection and the other one with Influenza A virus infection. Secondary infection occurred in 16 patients, with S. maltophilia as the most commonly isolated pathogen (43.8%), followed by P. aeruginosa (25.0%), E. aerogenes (25.0%), C. parapsilosis (25.0%) and A. fumigates (18.8%). ConclusionPatients with confirmed COVID-19 were rarely co-infected with Streptococcus pneumoniae or other pathogens, indicating that the application of antibiotics against CAP on admission may not be necessary in the treatment of COVID-19 cases.


Subject(s)
COVID-19
6.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-112099.v1

ABSTRACT

Background. Since 2020 COVID-19 pandemic became an emergent public sanitary incident. The epidemiology data and the impact on prognosis of secondary infection in severe and critical COVID-19 patients in China remained largely unclear.Methods. We retrospectively reviewed medical records of all adult patients with laboratory-confirmed COVID-19 who were admitted to ICUs from January 18th 2020 to April 26th 2020 at two hospitals in Wuhan, China and one hospital in Guangzhou, China. We measured the frequency of bacteria and fungi cultured from respiratory tract, blood and other body fluid specimens. The risk factors for and impact of secondary infection on clinical outcomes were also assessed. Results. Secondary infections were very common (86.6%) when patients were admitted to ICU for >72 hours. The majority of infections were respiratory, with the most common organisms being Klebsiella pneumoniae (24.5%), Acinetobacter baumannii (21.8%), Stenotrophomonas maltophilia (9.9%), Candida albicans (6.8%), and Pseudomonas spp. (4.8%). Furthermore, the proportions of multidrug resistant (MDR) bacteria and carbapenem resistant Enterobacteriaceae (CRE) were high. We also found that age ≥60 years and mechanical ventilation ≥13days independently increased the likelihood of secondary infection. Finally, patients with positive cultures had reduced ventilator free days in 28 days and patients with CRE and/or MDR bacteria positivity showed lower 28 day survival rate.Conclusions. In a retrospective cohort of severe and critical COVID-19 patients admitted to ICUs in China, the prevalence of secondary infection was high, especially with CRE and MDR bacteria, resulting in poor clinical outcomes.


Subject(s)
Coinfection , Klebsiella Infections , Tuberculosis, Multidrug-Resistant , COVID-19 , Enterobacteriaceae Infections
7.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-99500.v1

ABSTRACT

Objectives: The pandemic of the coronavirus disease 2019 (COVID-19) continuously poses a serious threat to public health, highlighting an urgent need for simple and efficient early detection and prediction. Methods: We comprehensively investigated and reanalyzed the published indexes and models for predicting severe illness among COVID‑19 patients in our dataset, and validated them on an independent dataset. Results: 696 COVID-19 cases in the discovery stage and 337 patients in the validation stage were involved. The AuROC of neutrophil to lymphocyte ratio (NLR) (0.782) was significantly higher than that of the other 11 independent risk indexes in severe outcome prediction. The combination of NLR and oxygen saturation (SaO2) (NLR+SaO2) showed the biggest AuROC calculations with a value of 0.901; with a cut-off value of 0.532, it exhibited 84.2% sensitivity, 88.4% specificity and 86.8% correct classification ratio. Moreover, we first identified that principal component analysis (PCA) is an effective tool to predict the severity of COVID-19. We obtained 86.5% prediction accuracy with 86% sensitivity when PCA was applied to predict severe illness. In addition, to evaluate the performance of NLR+SaO2 and PCA, we compared them with currently published predictive models in the same dataset. Conclusions: It showed that NLR+SaO2 is an appropriate and promising method for predicting severe illness, followed by PCA. We then validated the results on an independent dataset and revealed that they remained robust accuracy in outcome prediction. This study is significant for early treatment, intervention, triage and saving limited resources.


Subject(s)
COVID-19
8.
Pharmacol Res ; 156: 104761, 2020 06.
Article in English | MEDLINE | ID: covidwho-830796

ABSTRACT

PURPOSE: Lianhuaqingwen (LH) as traditional Chinese medicine (TCM) formula has been used to treat influenza and exerted broad-spectrum antiviral effects on a series of influenza viruses and immune regulatory effects Ding et al. (2017). The goal of this study is to demonstrate the antiviral activity of LH against the novel SARS-CoV-2 virus and its potential effect in regulating host immune response. METHODS: The antiviral activity of LH against SARS-CoV-2 was assessed in Vero E6 cells using CPE and plaque reduction assay. The effect of LH on virion morphology was visualized under transmission electron microscope. Pro-inflammatory cytokine expression levels upon SARS-CoV-2 infection in Huh-7 cells were measured by real-time quantitative PCR assays. RESULTS: LH significantly inhibited SARS-CoV-2 replication in Vero E6 cells and markedly reduced pro-inflammatory cytokines (TNF-α, IL-6, CCL-2/MCP-1 and CXCL-10/IP-10) production at the mRNA levels. Furthermore, LH treatment resulted in abnormal particle morphology of virion in cells. CONCLUSIONS: LH significantly inhibits the SARS-COV-2 replication, affects virus morphology and exerts anti-inflammatory activity in vitro. These findings indicate that LH protects against the virus attack, making its use a novel strategy for controlling the COVID-19 disease.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Drugs, Chinese Herbal/pharmacology , Animals , Betacoronavirus/ultrastructure , Cell Line , Chlorocebus aethiops , Microscopy, Electrochemical, Scanning , SARS-CoV-2
9.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-72429.v1

ABSTRACT

Background: The Coronavirus Disease 2019 (COVID-19) already have been as a pandemic. However, knowledge about the sequelae of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection remains limited. Here we descirbe the pulmonary function test (PFT) and cardiopulmonary exercise test (CPET) of critically ill COVID-19 in four cases with sereve acute respiratory distress syndrome (ARDS) after discharge.Case presentation: We introduce four patients who complained of fever, cough, chest tightness and other symptoms, all of them were confirmed as SARS-CoV-2 infection by real-time reverse transcription polymerase chain reaction (RT-PCR). They were treated with mechanical ventilation because of severe ARDS. After respiratory support, antiviral and anti-infective treatment, they were weaned from mechanic ventilation with the improvement of hypoxemia. All patients were discharged from the hospital after completion of treatment and had no mortality. Around 1-month post-discharge, they were followed up for chest computed tomography (CT) scan, and performed PFT and CPET. Peak oxygen uptake of predicted (peakVO2% pred) decreased in all four cases, although spirometry were in the normal range, and only 2 cases had mild decline in carbon monoxide diffusion capacity of predicted (DLCO%pred).Conclusions: We found reduced exercise endurance in all four COVID-19 survivors, even parts of them with normal or slightly abnormal static lung function. We also believe that exercise endurance impairment of COVID-19 convalescents is more likely affected by extrapulmonary factors. Taken the above into consideration, our study highlights that the combination of PFT and CPET are important tests for tracking the development and recovery of COVID-19 survivors.


Subject(s)
Coronavirus Infections , Respiratory Distress Syndrome , Fever , Chest Pain , Cough , Hypoxia , COVID-19
10.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-64080.v1

ABSTRACT

Objectives: The pandemic of the coronavirus disease 2019 (COVID-19) continuously poses a serious threat to public health, highlighting an urgent need for simple and efficient early detection and prediction. Methods: We comprehensively investigated and reanalyzed the published indexes and models for predicting severe illness among COVID‑19 patients in our dataset, and validated them on an independent dataset. Results: 696 COVID-19 cases in the discovery stage and 337 patients in the validation stage were involved. The AuROC of neutrophil to lymphocyte ratio (NLR) (0.782) was significantly higher than that of the other 11 independent risk indexes in severe outcome prediction. The combination of NLR and oxygen saturation (SaO2) (NLR+SaO2) showed the biggest AuROC calculations with a value of 0.901; with a cut-off value of 0.532, it exhibited 84.2% sensitivity, 88.4% specificity and 86.8% correct classification ratio. Moreover, we first identified that principal component analysis (PCA) is an effective tool to predict the severity of COVID-19. We obtained 86.5% prediction accuracy with 86% sensitivity when PCA was applied to predict severe illness. In addition, to evaluate the performance of NLR+SaO2 and PCA, we compared them with currently published predictive models in the same dataset. Conclusions: It showed that NLR+SaO2 is an appropriate and promising method for predicting severe illness, followed by PCA. We then validated the results on an independent dataset and revealed that they remained robust accuracy in outcome prediction. This study is significant for early treatment, intervention, triage and saving limited resources.


Subject(s)
COVID-19
11.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.08.11.20172452

ABSTRACT

The capacity to accurately diagnosis COVID-19 is essential for effective public health measures to manage the ongoing global pandemic, yet no presently available diagnostic technologies or clinical protocols can achieve full positive predictive value (PPV) and negative predictive value (NPV) performance. Two factors prevent accurate diagnosis: the failure of sampling methods (e.g., 40% false negatives from PCR testing of nasopharyngeal swabs) and sampling-time-dependent failures reflecting individual humoral responses of patients (e.g., serological testing outside of the sero-positive stage). Here, we report development of a diagnostic protocol that achieves full PPV and NPV based on a cohort of 500 confirmed COVID-19 cases, and present several discoveries about the sero-conversion dynamics throughout the disease course of COVID-19. The fundamental enabling technology for our study and diagnostic protocol-termed SANE, for Symptom (dpo)-Antibody-Nucleic acid-Epidemiological history-is our development of a peptide-protein hybrid microarray (PPHM) for COVID-19. The peptides comprising PPHMCOVID-19 were selected based on clinical sample data, and give our technology the unique capacity to monitor a patient's humoral response throughout the disease course. Among other assay-development related and clinically relevant findings, our use of PPHMCOVID-19 revealed that 5% of COVID-19 patients are from an "early sero-reversion" subpopulation, thus explaining many of the mis-diagnoses we found in our comparative testing using PCR, CLIA, and PPHMCOVID-19. Accordingly, the full SANE protocol incorporates orthogonal technologies to account for these patient variations, and successfully overcomes both the sampling method and sampling time limitations that have previously prevented doctors from achieving unambiguous, accurate diagnosis of COVID-19


Subject(s)
COVID-19
12.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.11.242834

ABSTRACT

AT-527, an orally administered double prodrug of a guanosine nucleotide analog, has been shown previously to be highly efficacious and well tolerated in HCV-infected subjects. Herein we report the potent in vitro activity of AT-511, the free base form of AT-527, against several coronaviruses, including SARS-CoV-2, the causative agent of COVID-19. In normal human airway epithelial (HAE) cell preparations, the average concentration of AT-511 required to inhibit replication of SARS-CoV-2 by 90% (EC90) was 0.5 {micro}M, very similar to the EC90 for AT-511 against HCoV-229E, HCoV-OC43 and SARS-CoV in Huh-7 cells. No cytotoxicity was observed for AT-511 in any of the antiviral assays up to the highest concentration tested (100 {micro}M). Surprisingly, AT-511 was 30-fold less active against MERS-CoV. This differential activity may provide a clue to the apparent unique mechanism of action of the guanosine triphosphate analog formed from AT-527.


Subject(s)
COVID-19 , Hepatitis C , Severe Acute Respiratory Syndrome , Drug-Related Side Effects and Adverse Reactions
13.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-52433.v1

ABSTRACT

Background: The pandemic of the coronavirus disease 2019 (COVID-19) has brought a global public health crisis. However, the pathogenesis underlying COVID-19 are barely understood. Methods: : In this study, we performed proteomic analyses of airway mucus obtained by bronchoscopy from severe COVID-19 patients. In total, 2351 and 2073 proteins were identified and quantified in COVID-19 patients and healthy controls, respectively. Results: : Among them, 92 differentiated expressed proteins (DEPs) (46 up-regulated and 46 down-regulated) were found with a fold change > 1.5 or < 0.67 and a p-value < 0.05, and 375 proteins were uniquely present in airway mucus from COVID-19 patients. Pathway and network enrichment analyses revealed that the 92 DEPs were mostly associated with metabolic, complement and coagulation cascades, lysosome, and cholesterol metabolism pathways, and the 375 COVID-19 only proteins were mainly enriched in amino acid degradation (Valine, Leucine and Isoleucine degradation), amino acid metabolism (beta-Alanine, Tryptophan, Cysteine and Methionine metabolism), oxidative phosphorylation, phagosome, and cholesterol metabolism pathways. Conclusions: : This study aims to provide fundamental data for elucidating proteomic changes of COVID-19, which may implicate further investigation of molecular targets directing at specific therapy.


Subject(s)
COVID-19
14.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-50740.v1

ABSTRACT

The newly identified 2019 novel coronavirus (2019-nCoV) has caused more than 81,400 laboratory-confirmed human infections, including 3261 deaths, posing a serious threat to human health. Currently, however, there is no specific antiviral treatment or vaccine. To identify immunodominant peptides for designing global peptide vaccine for combating the infections caused by 2019-nCoV, the structure and immunogenicity of 2019-nCoV structural protein were analyzed by bioinformatics tools. 33 B-cell epitopes and 39 T-cell epitopes were determined in four structural proteins via different immunoinformatic tools in which include spike protein (22 B-cell epitopes, 25 T-cell epitopes ), nucleocapsid protein (7 B-cell epitopes, 6 T-cell epitopes), membrane protein (2 B-cell epitopes, 7 T-cell epitopes), and envelope protein (2 B-cell epitopes, 1T-cell epitopes), respectively. The proportion of epitope residues in primary sequence was used to determine the antigenicity and immunogenicity of proteins. The envelope protein has the largest antigenicity in which residue coverage of B-cell epitopes is 24%. The membrane protein possesses the largest immunogenicity in which residue coverage of T-cell epitopes is 55.86%. The reason that immune storm was caused by 2019-nCoV maybe that the membrane and envelope protein expressed plentifully in cell infected. Further, studies involving experimental validation of these predicted epitopes is warranted to ensure the potential of B-cells and T-cells stimulation for their effective use as vaccine candidates. These findings provide the basis for starting further studies on the pathogenesis, and optimizing the design of diagnostic, antiviral and vaccination strategies for this emerging infection.


Subject(s)
Emergencies , Death
15.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-50431.v1

ABSTRACT

Background: Since the clinical correlates, prognosis and determinants of AKI in patients with Covid-19 remain largely unclear, we perform a retrospective study to evaluate the incidence, risk factors and prognosis of AKI in severe and critically ill patients with Covid-19.Methods: We reviewed medical records of all adult patients (>18 years) with laboratory-confirmed Covid-19 who were admitted to the intensive care unit (ICU) between January 23rd 2020 and April 6th 2020 at Wuhan JinYinTan Hospital and The First Affiliated Hospital of Guangzhou Medical University. The clinical data, including patient demographics, clinical symptoms and signs, laboratory findings, treatment [including respiratory supports, use of medications and continuous renal replacement therapy (CRRT)] and clinical outcomes, were extracted from the electronic records, and we access the incidence of AKI and the use of CRRT, risk factors for AKI, the outcomes of renal diseases, and the impact of AKI on the clinical outcomes.Results: Among 210 subjects, 131 were males (62.4%). The median age was 64 years (IQR: 56-71). Of 92 (43.8%) patients who developed AKI during hospitalization, 13 (14.1%), 15 (16.3%) and 64 (69.6%) patients were classified as stage 1, 2 and 3, respectively. 54 cases (58.7%) received CRRT. Age, sepsis, Nephrotoxic drug, IMV and elevated baseline Scr were associated with AKI occurrence. The renal recover during hospitalization among 16 AKI patients (17.4%), who had a significantly shorter time from admission to AKI diagnosis, lower incidence of right heart failure and higher P/F ratio. Of 210 patients, 93 patients deceased within 28 days of ICU admission. AKI stage 3, critical disease, greater age and minimum P/F <150mmHg independently associated with it.Conclusions: Among patients with Covid-19, the incidence of AKI was high. age , sepsis, nephrotoxic drug, IMV and baseline Scr were strongly associated with the development of AKI. Time from admission to AKI diagnosis, right heart failure and P/F ratio were independently associated with the potential of renal recovery. Finally, AKI KIDGO stage 3 independently predicted the risk of death within 28 days of ICU admission.


Subject(s)
Heart Failure , Critical Illness , Sepsis , Kidney Diseases , COVID-19
16.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.07.02.20143032

ABSTRACT

Summary Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic of Coronavirus disease 2019 (COVID-19). However, microbial composition of the respiratory tract and other infected tissues, as well as their possible pathogenic contributions to varying degrees of disease severity in COVID-19 patients remain unclear. Method Between January 27 and February 26, 2020, serial clinical specimens (sputum, nasal and throat swab, anal swab and feces) were collected from a cohort of hospitalized COVID-19 patients, including 8 mildly and 15 severely ill patients (requiring ICU admission and mechanical ventilation), in the Guangdong province, China. Total RNA was extracted and ultra-deep metatranscriptomic sequencing was performed in combination with laboratory diagnostic assays. Co-infection rates, the prevalence and abundance of microbial communities in these COVID-19 patients were determined. Findings Notably, respiratory microbial co-infections were exclusively found in 84.6% of severely ill patients (11/13), among which viral and bacterial co-infections were detected by sequencing in 30.8% (4/13) and 69.2% (9/13) of the patients, respectively. In addition, for 23.1% (3/13) of the patients, bacterial co-infections with Burkholderia cepacia complex (BCC) and Staphylococcus epidermidis were also confirmed by bacterial culture. Further, a time-dependent, secondary infection of B. cenocepacia with expressions of multiple virulence genes in one severely ill patient was demonstrated, which might be the primary cause of his disease deterioration and death one month after ICU admission. Interpretation Our findings identified distinct patterns of co-infections with SARS-CoV-2 and various respiratory pathogenic microbes in hospitalized COVID-19 patients in relation to disease severity. Detection and tracking of BCC-associated nosocomial infections are recommended to improve the pre-emptive treatment regimen and reduce fatal outcomes of hospitalized patients infected with SARS-CoV-2. Funding National Science and Technology Major Project of China, National Major Project for Control and Prevention of Infectious Disease in China, the emergency grants for prevention and control of SARS-CoV-2 of Ministry of Science and Technology and Guangdong province, Guangdong Provincial Key Laboratory of Genome Read and Write, Guangdong Provincial Academician Workstation of BGI Synthetic Genomics, and Shenzhen Engineering Laboratory for Innovative Molecular Diagnostics.


Subject(s)
Coinfection , Pneumonia, Staphylococcal , Bacterial Infections , Cross Infection , Communicable Diseases , Death , COVID-19
17.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.06.26.173203

ABSTRACT

The emergence of the novel human coronavirus, SARS-CoV-2, causes a global COVID-19 (coronavirus disease 2019) pandemic. Here, we have characterized and compared viral populations of SARS-CoV-2 among COVID-19 patients within and across households. Our work showed an active viral replication activity in the human respiratory tract and the co-existence of genetically distinct viruses within the same host. The inter-host comparison among viral populations further revealed a narrow transmission bottleneck between patients from the same households, suggesting a dominated role of stochastic dynamics in both inter-host and intra-host evolutions. Author summaryIn this study, we compared SARS-CoV-2 populations of 13 Chinese COVID-19 patients. Those viral populations contained a considerable proportion of viral sub-genomic messenger RNAs (sgmRNA), reflecting an active viral replication activity in the respiratory tract tissues. The comparison of 66 identified intra-host variants further showed a low viral genetic distance between intra-household patients and a narrow transmission bottleneck size. Despite the co-existence of genetically distinct viruses within the same host, most intra-host minor variants were not shared between transmission pairs, suggesting a dominated role of stochastic dynamics in both inter-host and intra-host evolutions. Furthermore, the narrow bottleneck and active viral activity in the respiratory tract show that the passage of a small number of virions can cause infection. Our data have therefore delivered a key genomic resource for the SARS-CoV-2 transmission research and enhanced our understanding of the evolutionary dynamics of SARS-CoV-2.


Subject(s)
COVID-19
18.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-37147.v1

ABSTRACT

Background Rapid and convenient screening for identification of SARS-CoV-2 infected individuals are key to prevent and control this pandemic.Methods The peripheral blood samples were collected from coronavirus disease 2019 (COVID-19) patients and asymptomatic carriers to evaluate the test characteristics of the IgM-IgG combined assay for SARS-CoV-2 compared to that of serum samples and enzyme-linked immuno sorbent assay (ELISA). Close contacts, healthcare workers and workforces were recruited and screened using this assay.Results The sensitivity of the rapid IgM-IgG combined antibody test for SARS-CoV-2 using peripheral blood (sued as a POCT) was 97.0% and the specificity was 99.2%, which was consistent with the result obtained using serum sample (consistency is about 100%). Furthermore, this POCT assay also can detect IgM and IgG antibodies of SARS-CoV‐2 in asymptomatic carriers, with 19 of the 20 RT-PCR confirmed asymptomatic carriers testing positive. Therefore, this POCT assay was used for population screening of SARS-CoV-2 infection diagnosis. First, it found 4 positive close contacts among the 10 cases, and there were three IgM positive cases and one IgG positive case among them. It is worth noting that the IgM positive cases also tested positive for the nucleic acid of the SARS-CoV-2. Second, there was one IgM positive assay among the 63 healthcare workers, but RT-PCR of SARS CoV-2 was negative. Third, for workforces screening, there were no positive cases.Conclusions The IgM-IgG combined antibody test of SARS-CoV-2 can be used as a POCT for rapid screening of SARS-CoV-2 infection.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
19.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.05.23.20100024

ABSTRACT

The vastly spreading COVID-19 pneumonia is caused by SARS-CoV-2. Lymphopenia and cytokine levels are tightly associated with disease severity. However, virus-induced immune dysregulation at cellular and molecular levels remains largely undefined. Here, the leukocytes in the pleural effusion, sputum, and peripheral blood biopsies from severe and mild patients were analyzed at single-cell resolution. Drastic T cell hyperactivation accompanying elevated T cell exhaustion was observed, predominantly in pleural effusion. The mechanistic investigation identified a group of CD14+ monocytes and macrophages highly expressing CD163 and MRC1 in the biopsies from severe patients, suggesting M2 macrophage polarization. These M2-like cells exhibited up-regulated IL10, CCL18, APOE, CSF1 (M-CSF), and CCL2 signaling pathways. Further, SARS-CoV-2-specific T cells were observed in pleural effusion earlier than in peripheral blood. Together, our results suggest that severe SARS-CoV-2 infection causes immune dysregulation by inducing M2 polarization and subsequent T cell exhaustion. This study improves our understanding of COVID-19 pathogenesis.


Subject(s)
Lymphoma, T-Cell , Pleural Effusion , Pneumonia , Chronobiology Disorders , COVID-19 , Lymphopenia
20.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.05.20.103549

ABSTRACT

As of middle May 2020, the causative agent of COVID-19, SARS-CoV-2, has infected over 4 million people with more than 300 thousand death as official reports1,2. The key to understanding the biology and virus-host interactions of SARS-CoV-2 requires the knowledge of mutation and evolution of this virus at both inter- and intra-host levels. However, despite quite a few polymorphic sites identified among SARS-CoV-2 populations, intra-host variant spectra and their evolutionary dynamics remain mostly unknown. Here, using deep sequencing data, we achieved and characterized consensus genomes and intra-host genomic variants from 32 serial samples collected from eight patients with COVID-19. The 32 consensus genomes revealed the coexistence of different genotypes within the same patient. We further identified 40 intra-host single nucleotide variants (iSNVs). Most (30/40) iSNVs presented in single patient, while ten iSNVs were found in at least two patients or identical to consensus variants. Comparison of allele frequencies of the iSNVs revealed genetic divergence between intra-host populations of the respiratory tract (RT) and gastrointestinal tract (GIT), mostly driven by bottleneck events among intra-host transmissions. Nonetheless, we observed a maintained viral genetic diversity within GIT, showing an increased population with accumulated mutations developed in the tissue-specific environments. The iSNVs identified here not only show spatial divergence of intra-host viral populations, but also provide new insights into the complex virus-host interactions.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL